Hacking is not a new pursuit. It started in the early 1960s when the first "serious" time-share computers began to appear at university sites. Very early on, 'unofficial' areas of the memory started to appear, first as mere notice boards and scratch pads for private programming experiments, then, as locations for games. (Where, and how do you think the early Space Invaders, Lunar Landers and Adventure Games were created?) Perhaps tech-hacking-- the mischievous manipulation of technology--goes back even further. One of the old favourites of US campus life was to rewire the control panels of elevators (lifts) in high-rise buildings, so that a request for the third floor resulted in the occupants being whizzed to the twenty-third.
Towards the end of the 60s, when the first experimental networks arrived on the scene (particularly when the legendary ARPAnet--Advanced Research Projects Agency network-- opened up), the computer hackers skipped out of their own local computers, along the packet-switched high grade communications lines, and into the other machines on the net. But all these hackers were privileged individuals. They were at a university or research resource, and they were able to borrow terminals to work with. What has changed now, of course, is the wide availability of home computers and the modems to go with them, the growth of public-access networking of computers, and the enormous quantity and variety of computers that can be accessed.
Hackers vary considerably in their native computer skills; a basic knowledge of how data is held on computers and can be transferred from one to another is essential. Determination, alertness, opportunism, the ability to analyse and synthesise, the collection of relevant helpful data and luck--the pre-requisites of any intelligence officer--are all equally important. If you can write quick effective programs in either a high level language or machine code, well, it helps. A knowledge of on-line query procedures is helpful, and the ability to work in one or more popular mainframe and mini operating systems could put you in the big league.
The materials and information you need to hack are all around you--only they are seldom marked as such. Remember that a large proportion of what is passed off as 'secret intelligence' is openly available, if only you know where to look and how to appreciate what you find. At one time or another, hacking will test everything you know about computers and communications. You will discover your abilities increase in fits and starts, and you must be prepared for long periods when nothing new appears to happen.
Popular films and tv series have built up a mythology of what hackers can do and with what degree of ease. My personal delight in such Dream Factory output is in compiling a list of all the mistakes in each episode. Anyone who has ever tried to move a graphics game from one micro to an almost-similar competitor will already know that the chances of getting a home micro to display the North Atlantic Strategic Situation as it would be viewed from the President's Command Post would be slim even if appropriate telephone numbers and passwords were available. Less immediately obvious is the fact that most home micros talk to the outside world through limited but convenient asynchronous protocols, effectively denying direct access to the mainframe products of the world's undisputed leading computer manufacturer, which favours synchronous protocols. And home micro displays are memory-mapped, not vector-traced... Nevertheless, it is astonishingly easy to get remarkable results. And thanks to the protocol transformation facilities of PADs in PSS networks (of which much more later), you can get into large IBM devices.... The cheapest hacking kit I have ever used consisted of a ZX81, 16K RAMpack, a clever firmware accessory and an acoustic coupler. Total cost, just over รบ100. The ZX81's touch-membrane keyboard was one liability; another was the uncertainty of the various connectors. Much of the cleverness of the firmware was devoted to overcoming the native drawbacks of the ZX81's inner configuration--the fact that it didn't readily send and receive characters in the industry-standard ASCII code, and that the output port was designed more for instant access to the Z80's main logic rather than to use industry-standard serial port protocols and to rectify the limited screen display. Yet this kit was capable of adjusting to most bulletin boards; could get into most dial-up 300/300 asynchronous ports, re-configuring for word-length and parity if needed; could have accessed a PSS PAD and hence got into a huge range of computers not normally available to micro-owners; and, with another modem, could have got into viewdata services. You could print out pages on the ZX 'tin-foil' printer. The disadvantages of this kit were all in convenience, not in facilities. Chapter 3 describes the sort of kit most hackers use. It is even possible to hack with no equipment at all. All major banks now have a network of 'hole in the wall' cash machines-- ATMs or Automatic Telling Machines, as they are officially
Taken from Hacker Handbook
Friday, April 08, 2005
Hacker Handbook
Posted by rakalap at Friday, April 08, 2005
Subscribe to:
Post Comments (Atom)
0 comments:
Post a Comment